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Abstract: In this paper, we consider a general class of delayed nonautonomous logistic Lotka-Volterra type multi-
species cooperative system with harvesting terms on time scales. The model invovles the intraspecific cooperative
terms defined by functions which depend on population densities. An existence theorem of at least 2n periodic
solutions is established by using the coincidence degree theory. An example is given to illustrate the effectiveness
of our result.
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1 Introduction
In the past decades, the applications of functional
differential equations in ecosystem have developed
rapidly. Various mathematical models with delays
have been proposed in study of population dynam-
ics (for example, see[1-15]). Owing to its theoretical
and practical significance, Lotka-Volterra system have
been studied extensively [16-33].

It is well known that the focus in theoretical mod-
els of population and community dynamics must be
not only on how populations dependent on their own
population densities or the population densities of
other organisms, but also on how population change
in response to the physical environment. To consider
periodic environment factors (e.g, seasonal effects of
weather, food supplies, mating habits, etc), it is rea-
sonable to study Lotka-Volterra systems with periodic
coefficients.

A very basic and important problem in the study
of a population growth model with a periodic envi-
ronment is the global existence and stability of a pos-
itive periodic solution, which plays a similar role as
a globally stable equilibrium does in an autonomous
model. Recently, there have been many nice works on
the existence problem of positive periodic solutions
of Lotka-Volterra systems with periodic coefficients
[9-14,16-23]. Since the exploitation of biological re-
sources and the harvest of population species are com-
monly practiced in fishery, forestry and wildlife man-
agement, the study of population dynamics with har-
vesting is an important subject in mathematical bioe-
conomics, which is related to the optimal management

of renewable resources (see [34-36]). This motivates
us to consider the following nonautonomous delay n
species cooperative system with harvesting terms:

ẋi(t) = xi(t)·(
ai(t)−

fi(t, xi(t− τii(t)))

Ki
xi(t− τii(t))

+

n∑
j=1,j ̸=i

cij(t)xj(t− τij(t))

)
− hi(t),

(1)
where xi(t)(i = 1, 2, . . . , n) stands for the ith species
population density. ai(t) > 0, fi(t, xi) > 0, cij(t) >
0 and hi(t) > 0 are the natural reproduction rate,
the intraspecific competition, the interspecific cooper-
ation and the harvesting term, respectively, Ki > 0 is
the carrying capacity which is a constant, τij(t) ≥ 0 is
the time-lag in the process of cooperation between ith
and jth species, ai(t), cij(t), τij(t) and hi(t)(i, j =
1, 2, . . . , n) are all continuous ω-periodic functions
and fi(t, x) ∈ C(R2,R+) and fi(t, x) = fi(t+ω, x),
for all t ∈ R and x ∈ R.

If the estimates of the population size and all co-
efficients in (1) are made at equally spaced time in-
tervals, then we can incorporate this aspect in (1) and
obtain the following discrete analogue of system (1):

xi(k+1)
xi(k)

=

exp

{
ai(k)− fi(k,xi(k−τii(k)))

Ki
xi(k − τii(k))

+
n∑

j=1,j ̸=i

cij(k)xj(k − τij(k))− hi(k)
xi(k)

}
,

(2)
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where for i, j = 1, 2, . . . , n, ai : Z → R+, cij : Z →
R+, τij : Z → Z+, hi : Z → R+, fi : Z × R →
R+ are all ω-periodic, that is, ai(k + ω) = ai(k),
cij(k+ω) = cij(k), τij(k+ω) = τij(k), hi(k+ω) =
hi(k), fi(k + ω, x) = fi(k, x), for any Z (the set
of all integers), ω is a fixed positive integer. How-
ever, dynamics in each equally spaced time interval
may vary continuously. So, it may be more realistic
to assume that the population dynamics involves the
hybrid discrete-continuous processes. For example,
Gamarra and Solé pointed out that such hybrid pro-
cesses appear in the population dynamics of certain
species that feature nonoverlapping generations: the
change in population from one generation to the next
is discrete and so is modeled by a difference equa-
tion, while within-generation dynamics vary continu-
ously (due to mortality rates, resource consumption,
predation, interaction, etc.) and thus are described by
a differential equation [37]. The theory of calculus on
time scales (see [38-39] and references cited therein)
was initiated by Hilger in his Ph.D. thesis in 1988 [40]
in order to unify continuous and discrete analysis, and
it has become an effective approach to the study of
mathematical models involving the hybrid discrete-
continuous processes. This motivates us to unify sys-
tems (1) and (2) to the system on time scales T as
follows:

u∆i (t) = ai(t)−
fi(t, e

ui(t−τii(t)))

Ki
eui(t−τii(t))

+

n∑
j=1,j ̸=i

cij(t)e
uj(t−τij(t)) − hi(t)e

−ui(t),

(3)
where ai(t) > 0, cij(t) > 0, τij(t) ≥ 0 and
hi(t) > 0(i, j = 1, 2, . . . , n) are all rd-continuous
ω-periodic functions and fi(t, x) ∈ Crd(T × R,R+)
and fi(t, u) = fi(t+ ω, u), for all t ∈ T and u ∈ R.

In (3), let xi(t) = eui(t), i = 1, 2, . . . , n. If T =
R (the set of all real numbers), then (3) reduces to (1).
If T = Z (the set of all integers), then (3) reduces to
(2).

To the best of our knowledge, no work has been
done for the existence of periodic solutions of system
(3) yet. Our main purpose of this paper is to estab-
lish the existence of at least 2n positive periodic solu-
tions for system (3) by using Mawhin’s continuation
theorem of coincidence degree theory [41]. For the
work concerning the multiple existence of periodic so-
lutions of periodic population models which was done
using coincidence degree theory, we refer to [42-52].

The remain of this paper is organized as follows.
In Section 2, some notations and basic theorem or
lemmas on time scales are given. In Section 3, the
main results of the existence of multiple periodic so-

lutions of system (3) is obtained. In Section 4, one
example is given to illustrate the effectiveness of our
results. Finally, some brief conclusions are presented
in Section 5.

2 Preliminaries on Time Scales
In this section, we briefly recall some basic definitions
and lemmas on time scales which are used in what
follows. For more details, one can see [38-40].

Let T be a nonempty closed subset (time scale) of
R. The forward and backward jump operators σ, ρ :
T → T and the graininess µ : T → R+ are defined,
respectively, by σ(t) = inf{s ∈ T : s > t}, ρ(t) =
sup{s ∈ T : s < t} and µ(t) = σ(t)− t.

A point t ∈ T is called left-dense if t > inf T
and ρ(t) = t, left-scattered if ρ(t) < t, right-dense if
t < supT and σ(t) = t, and right-scattered if σ(t) >
t. If T has a left-scattered maximum m, then Tk =
T\{m}; otherwise Tk = T. If T has a right-scattered
minimum m, then Tk = T \ {m}; otherwise Tk = T.

Let ω > 0. Throughout this paper, the time scale
T is assumed to be ω-periodic, that is, t ∈ T implies
t + ω ∈ T. In particular, the time scale T under con-
sideration is unbounded above and below.

Definition 1. A function f : T → R is called
regulated provided its right-side limits exist (finite)
at all right-side points in T and its left-side limits ex-
ist (finite) at all left-side points in T.

Definition 2. A function f : T → R is called rd-
continuous provided it is continuous at right-dense
point in T and its left-side limits exist (finite) at left-
dense points in T. The set of rd-continuous functions
f : T → R will be denoted by Crd = Crd(T) =
Crd(T,R).

Definition 3. Assume f : T → R and t ∈ Tk. Then
we define f∆(t) to be to be the number (if it exists)
with the property that given any ε > 0 there exists a
neighborhood U of t (i.e., U = (t − δ, t + δ) ∩ T for
some δ > 0) such that

|[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]| < ε|σ(t)− s|

for all s ∈ U . we call f∆(t) the delta (or Hilger)
derivative of f at t. The set of functions f : T →
R that are differentiable and whose derivative is
rd−continuous is denoted by C1

rd = C1
rd(T) =

C1
rd(T,R).

If f is continuous, then f is rd-continuous. If
f is rd-continuous, the f is regulated. If f is delta
differentiable at t, then f is continuous at t.
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Lemma 4. Let f be regulated, then there exists a func-
tion F which is delta differentiable with region of dif-
ferentiation D such that

F∆(t) = f(t) for all t ∈ D.

Definition 5. Assume f : T → R is a regulated func-
tion. Any function F as in Lemma 2.1 is called a ∆-
antiderivative of f. We define the indefinite integral of
a regulated function f by∫

f(t)∆t = F (t) + C,

Where C is an arbitrary constant and F is a ∆-
antiderivative of f. We define the Cauchy integral by∫ b

a
f(s)∆s = F (b)− F (a) for all a, b ∈ T.

A function F : T → R is called an antiderivative of
f : T → R provided

F∆(t) = f(t) for all t ∈ Tk.

Lemma 6. If a, b ∈ T, α, β ∈ R and f, g ∈ C(T,R),
then

(i)
∫ b
a [αf(t) + βg(t)]∆t = α

∫ b
a f(t)∆t +

β
∫ b
a g(t)∆t;

(ii) if f(t) ≥ 0 for all a ≤ t < b, then
∫ b
a f(t)∆t ≥

0;

(iii) if |f(t)| ≤ g(t) on [a, b) := {t ∈ T : a ≤ t < b},
then |

∫ b
a f(t)∆t| ≤

∫ b
a g(t)∆t.

Lemma 7. [53] Assume that {fn}n∈N is a function on
J such that

(i) {fn}n∈N is uniformly bounded on J ,

(ii) {f∆
n }n∈N is uniformly bounded on J .

Then there is a subsequence of {fn}n∈N which con-
verges uniformly on J .

3 Existence of at least 2n periodic so-
lutions

In this section, by using Mawhin’s continuation theo-
rem, we shall show the existence of multiple periodic
solutions of (3). To do so, we need to make some
preparations.

Let X and Z be real normed vector spaces. Let
L : DomL ⊂ X → Z be a linear mapping and
N : X × [0, 1] → Z be a continuous mapping.

The mapping L will be called a Fredholm mapping
of index zero if dim Ker L = codim Im L < ∞
and Im L is closed in Z. If L is a Fredholm map-
ping of index zero, then there exists continuous pro-
jectors P : X → X and Q : Z → Z such that
ImP = KerL and KerQ = ImL = Im (I − Q),
and X = KerL

⊕
KerP,Z = ImL

⊕
ImQ. It fol-

lows that L|DomL∩Ker P : (I − P )X → ImL is in-
vertible and its inverse is denoted by KP . If Ω is a
bounded open subset of X , the mapping N is called
L-compact on Ω̄×[0, 1], if QN(Ω̄×[0, 1]) is bounded
and KP (I −Q)N : Ω̄× [0, 1] → X is compact. Be-
cause Im Q is isomorphic to Ker L, there exists an
isomorphism J : ImQ → KerL.

The Mawhin’s continuous theorem [41, p.40] is
given as follows:

Lemma 8. [41] Let L be a Fredholm mapping of index
zero and let N be L-compact on Ω̄× [0, 1]. Assume

(a) for each λ ∈ (0, 1), every solution x of Lx =
λN(x, λ) is such that x /∈ ∂Ω ∩Dom L;

(b) QN(x, 0)x ̸= 0 for each x ∈ ∂Ω ∩Ker L;

(c) deg(JQN(x, 0),Ω ∩KerL, 0) ̸= 0.

Then Lx = N(x, 1) has at least one solution in Ω ∩
DomL.

For the sake of convenience, we denote by

κ = min{[0,+∞) ∩ T}, Iω = [κ, κ+ ω] ∩ T,

gM = sup
t∈Iω

g(t), gl = inf
t∈Iω

g(t),

ḡ =
1

ω

∫
Iω

g(s)∆s =
1

ω

∫ κ+ω

κ
g(s)∆s,

where g ∈ Crd(T) is an ω-periodic real function, that
is, g(t+ ω) = g(t) for all t ∈ T.

l±i =
aliKi ±

√
(aliKi)2 − 4bMi hMi Ki

2bMi
,

L±
i

= ±

√(
Ki

(
aMi +

∑n
j=1,j ̸=i c

M
ij Kj

))2

− 4blih
l
iKi

2bli

+

Ki

(
aMi +

n∑
j=1,j ̸=i

cMij Kj

)
2bli

, i = 1, 2, . . . , n.

Throughout this paper, we need the following assump-
tions:
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(H1) fi(t, x) ∈ Crd(T× R,R+) is bounded and

inf
x∈R

min
t∈Iω

fi(t, x) = bli

and
sup
x∈R

max
t∈Iω

fi(t, x) = bMi ,

for all i = 1, 2, . . . , n.

(H2) ali > 2

√
bMi hM

i
Ki

, i = 1, 2, . . . , n.

Lemma 9. Assume that (H1) and (H2) hold, then we
have the following inequalities:

L−
i < l−i < l+i < L+

i , i = 1, 2, . . . , n.

Proof: In fact,

L−
i <

2hMi

aliKi ±
√

(aliKi)2 − 4bMi hMi Ki

= l−i < l+i ,

L+
i >

aliKi +
√

(aliKi)2 − 4bMi hMi Ki

2bMi
= l+i .

⊓⊔

Theorem 10. Assume that (H1) and (H2) hold. Then
system (3) has at least 2n positive ω-periodic solu-
tions.

Proof: In order to apply Lemma 8 to (3), we first
define

X = Z =

{
u = (u1, . . . , un)

T ∈ Crd(T, Rn) :

ui(t+ ω) = ui(t)

}
and

∥u∥ =
n∑

i=1

max
t∈Iω

|ui(t)|, u ∈ X or Z.

Equipped with the above norm ∥ · ∥, X and Z are
Banach spaces. Let for all u ∈ X

N(u, λ) =


N1(u, λ)

...
Ni(u, λ)

...
Nn(u, λ)


n×1

, Lu =


u∆1

...
u∆i

...
u∆n


n×1

,

Pu =



1
ω

∫ κ+ω
κ u1(t)∆t

...
1
ω

∫ κ+ω
κ ui(t)∆t

...
1
ω

∫ κ+ω
κ un(t)∆t


n×1

, u ∈ X,

Qz =



1
ω

∫ κ+ω
κ z1(t)∆t

...
1
ω

∫ κ+ω
κ zi(t)∆t

...
1
ω

∫ κ+ω
κ zn(t)∆t


n×1

, z ∈ Z,

where

Ni(u, λ) = ai(t)−
fi(t, e

ui(t−τii(t)))

Ki
eui(t−τii(t))

+λ
n∑

j=1,j ̸=i

cij(t)e
uj(t−τij(t))

−hi(t)e
−ui(t).

Thus it follows that KerL = {u ∈ X : (u1, u2,
. . . , un)

T = (h1, h2, . . . , hn)
T ∈ Rn, ∀t ∈ T} =

Rn, ImL = {z ∈ Z :
∫ κ+ω
κ z(t)∆t = 0} is closed

in Z, dimKer L = n = codim Im L, and P,Q are
continuous projectors such that

Im P = Ker L, Ker Q = Im L = Im (I −Q).

Hence, L is a Fredholm mapping of index zero.
Furthermore, the generalized inverse (to L) KP :
Im L → Ker P

∩
Dom L is given by

KP (z) =

∫ t

κ
z(s)∆s− 1

ω

∫ κ+ω

κ

∫ θ

κ
z(s)∆s∆θ.

Then

QN(u, λ) =



1
ω

∫ κ+ω
κ F1(s, λ)∆s

...
1
ω

∫ κ+ω
κ Fi(s, λ)∆s

...
1
ω

∫ κ+ω
κ Fn(s, λ)∆s


n×1
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and

Kp(I −Q)N(u, λ)

=



∫ t
κ F1(s, λ)∆s− 1

ω

∫ κ+ω
κ

∫ θ
κ F1(s, λ)∆s∆θ

+(12 − t
ω )

∫ κ+ω
κ F1(s, λ)∆s

...∫ t
κ Fi(s, λ)∆s− 1

ω

∫ κ+ω
κ

∫ θ
κ Fi(s, λ)∆s∆θ

+(12 − t
ω )

∫ κ+ω
κ Fi(s, λ)∆s

...∫ t
κ Fn(s, λ)∆s− 1

ω

∫ κ+ω
κ

∫ θ
κ Fn(s, λ)∆s∆θ

+(12 − t
ω )

∫ κ+ω
κ Fn(s, λ)∆s


where

Fi(s, λ)

= ai(s)−
fi(s, ui(s, e

ui(s−τii(s))))

Ki
eui(s−τii(s))

+λ

n∑
j=1,j ̸=i

cij(s)e
uj(s−τij(s)) − hi(s)e

−ui(s).

Obviously, QN and KP (I − Q)N are continu-
ous. By Lemma 7, it is not difficult to show that
KP (I −Q)N(Ω) is compact for any open bounded
set Ω ⊂ X . Moreover, QN(Ω) is clearly bounded.
Thus, N is L-compact on Ω with any open bounded
set Ω ⊂ X.

In order to use Lemma 8, we have to find at least
2n appropriate open bounded subsets in X. Consider-
ing the operator equation Lu = λN(u, λ), λ ∈ (0, 1),
we have

u∆i (t) = λ

(
ai(t)−

fi(t, e
ui(t−τii(t)))

Ki
eui(t−τii(t))

+λ
n∑

j=1,j ̸=i

cij(t)e
uj(t−τij(t))

−hi(t)e
−ui(t)

)
, (4)

where i = 1, . . . , n. Assume that u ∈ X is an ω-
periodic solution of system (4) for some λ ∈ (0, 1).
Since u(t) ∈ X, there exist ξi, ηi ∈ Iω, such that

ui(ξi) = max
t∈Iω

ui(t), ui(ηi) = min
t∈Iω

ui(t).

According to the definition of ∆-differential calculus,
we have

u∆i (ξi) ≤ 0, u∆i (ηi) ≥ 0, i = 1, 2, . . . , n. (5)

By (4) and (5), one has

ali < ai(ξi) + λ
n∑

j=1,j ̸=i

cij(ξi)e
uj(ξi−τij(ξi))

≤ fi(ξi, e
ui(ξi−τii(ξi)))

Ki
eui(ξi−τii(ξi))

+hi(ξi)e
−ui(ξi)

≤ bMi
Ki

eui(ξi) + hMi e−ui(ξi),

namely

bMi e2ui(ξi) − aliKie
ui(ξi) + hMi Ki > 0,

which imply that

ui(ξi) > ln l+i or ui(ξi) < ln l−i , (6)

and

bli
Ki

eui(ηi) + hlie
−ui(ηi)

<
fi(ηi, e

ui(ηi−τii(ηi)))

Ki
eui(ηi−τii(ηi))

+hi(ηi)e
−ui(ηi)

≤ ai(ηi) + λ

n∑
j=1,j ̸=i

cij(ηi)e
uj(ηi−τij(ηi))

≤ aMi +

n∑
j=1,j ̸=i

cMij Kj ,

namely

bli
Ki

e2ui(ηi) −
(
aMi +

n∑
j=1,j ̸=i

cMij Kj

)
eui(ηi) + hli > 0,

which imply that

lnL−
i < ui(ηi) < lnL+

i , i = 1, 2, . . . , n. (7)

By the assumptions (H1), (H2) and Lemma 9, we
have

lnL−
i < ln l−i < ln l+i < lnL+

i , i = 1, 2, . . . , n. (8)

From (6), (7) and (8), we obtain, for all t ∈ T,

lnL−
i < ui(t) < ln l−i or ln l+i < ui(t) < lnL+

i . (9)

For convenience, we denote

Gi =
(
lnL−

i , ln l
−
i

)
, Hi =

(
ln l+i , lnL

+
i

)
.
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Clearly, l±i and L+
i , i = 1, 2, . . . , n are independent

of λ. For each i = 1, 2, . . . , n, we choose an interval
between two intervals Gi and Hi and denote it as ∆i,
then define the set{
u = (u1, . . . , un)

T ∈ X : ui(t) ∈ ∆i, t ∈ R
}
.

Obviously, the number of the above sets is 2n. We
denote these sets as Ωk, k = 1, 2, . . . , 2n. Ωk, k =
1, 2, . . . , 2n are bounded open subsets of X,Ωi∩Ωj =
ϕ, i ̸= j. Thus Ωk(k = 1, 2, . . . , 2n) satisfies the re-
quirement (a) in Lemma 8.

Now we show that (b) of Lemma 8 holds, i.e.,
we prove when u ∈ ∂Ωk ∩ KerL = ∂Ωk ∩
Rn, QN(u, 0) ̸= (0, 0, . . . , 0)T , k = 1, 2, . . . , 2n.
If it is not true, then when u ∈ ∂Ωk ∩ KerL =
∂Ωk ∩ Rn, k = 1, 2, . . . , 2n, constant vector u =
(u1, u2, . . . , un)

T with u ∈ ∂Ωk, k = 1, 2, . . . , 2n,
satisfies

0 =

∫ κ+ω

κ
ai(t)∆t−

∫ κ+ω

κ

fi(t, e
ui)

Ki
eui ∆t

−
∫ κ+ω

κ
hi(t)e

−ui ∆t. (10)

By (10), we have

aMi +
n∑

j=1,j ̸=i

cMij Kj > aMi ≥ bli
Ki

eui + hlie
−ui ,

and

ali <
bMi
Ki

eui + hMi e−ui , i = 1, 2, . . . , n.

Similarly, we get

lnL−
i < ui < ln l−i or ln l+i < ui(ti) < lnL+

i . (11)

(11) gives that u belongs to one of Ωk ∩ Rn, k =
1, 2, . . . , 2n. This contradicts the fact that u ∈ ∂Ωk ∩
Rn, k = 1, 2, . . . , 2n. Thus condition (b) in Lemma 8
is satisfied.

Finally, in order to show that (c) in Lemma 8
holds, we only prove that for u ∈ ∂Ωk ∩ KerL =
∂Ωk ∩ Rn, k = 1, 2, . . . , 2n, then it holds that
deg{JQN(u, 0),Ωk∩Ker L, (0, 0, . . . , 0)T } ̸= 0. To
this end, we define the mapping ϕ : DomL× [0, 1] →
X by

ϕ(u, µ) = µQN(u, 0) + (1− µ)G(u),

here µ ∈ [0, 1] is a parameter and G(u) is defined by

G(u) =



∫ κ+ω
κ

(
a1(s)−

bM1
K1

eu1(s)

−h1(s)e
u1(s)

)
∆s

...∫ κ+ω
κ

(
an(s)− bMn

Kn
eun(s)

−hn(s)e
un(s)

)
∆s


n×1

.

We show that for u ∈ ∂Ωk ∩KerL = ∂Ωk ∩Rn, k =
1, 2, . . . , 2n, µ ∈ [0, 1], then it holds that ϕ(u, µ) ̸=
(0, 0, . . . , 0)T . Otherwise, parameter µ and constant
vector u = (u1, u2, . . . , un)

T ∈ Rn satisfy ϕ(u, µ) =
(0, 0 . . . , 0)T , i.e.,

0 =

∫ κ+ω

κ
[µ
(
ai(s)−

fi(s, e
ui)

Ki
eui − hi(s)e

−ui
)

+(1− µ)
(
ai(s)−

bMi
Ki

eui

−hi(s)e
−ui

)
]∆s, (12)

where i = 1, 2, . . . , n. From (12), we obtain

ω[ali −
bMi
Ki

eui − hMi e−ui ]

≤
∫ κ+ω

κ
[ai(s)−

bMi
Ki

eui − hi(s)e
−ui ]∆s

= −µ

∫ κ+ω

κ
[bMi − fi(s, e

ui))

Ki
eui ]∆s < 0

and

0 =

∫ κ+ω

κ
[ai(s)−

bMi
Ki

eui − hi(s)e
−ui

+µ(
bMi
Ki

− fi(s, e
ui)

Ki
)eui ]∆s

<

∫ κ+ω

κ
[ai(s)−

fi(s, e
ui)

Ki
eui − hi(s)e

−ui ]∆s

< ω[aMi − bli
Ki

eui − hlie
−ui ]

< ω[aMi +
n∑

j=1,i̸=j

cMij Kj −
bli
Ki

eui − hlie
−ui ],

which imply that

lnL−
i < ui < ln l−i or ln l+i < ui < lnL+

i , (13)

where i = 1, 2, . . . , n. (13) gives that u belongs to
one of Ωk∩Rn, k = 1, 2, . . . , 2n. This contradicts the
fact that u ∈ ∂Ωk ∩Rn, k = 1, 2, . . . , 2n. This proves
ϕ(u, µ) ̸= (0, 0, . . . , 0)T holds. Note that the system
of algebraic equations:

ai(t̄i)−
bMi
Ki

exi − hi(t̄i)e
−xi = 0, i = 1, 2, . . . , n

has 2n distinct solutions since (H1) and (H2) hold,
(x∗1, x

∗
2, . . . , x

∗
n) = (ln x̂1, ln x̂2, . . . , ln x̂n), where

x±i =
aiKi(t̄i)±

√
(ai(t̄i)Ki)2−4bMi hi(t̄i)Ki

2bMi
, x̂i = x−i or

x̂i = x+i , i = 1, 2, . . . , n. Similar to the proof of
Lemma 9, it is easy to verify that

lnL−
i < lnx−i < ln l−i < ln l+i < lnx+i < lnL+

i .
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Therefore, (x∗1, x
∗
2, . . . , x

∗
n) uniquely belongs to

the corresponding Ωk. Since KerL = ImQ, we can
take J = I. A direct computation gives, for k =
1, 2, . . . , 2n,

deg
{
JQN(u, 0),Ωk ∩Ker L, (0, 0, . . . , 0)T

}
= deg

{
ϕ(u, 1),Ωk ∩Ker L, (0, 0, . . . , 0)T

}
= deg

{
ϕ(u, 0),Ωk ∩Ker L, (0, 0, . . . , 0)T

}
= sign

[ n∏
i=1

(
− bMi

Ki
x∗i +

hi(t̄i)

x∗i

)]
.

Since ai(t̄i) −
bMi
Ki

x∗i − hi(t̄i)
x∗
i

= 0, i = 1, 2, . . . , n,

then

deg
{
JQN(u, 0),Ωk ∩KerL, (0, 0, . . . , 0)T

}
= sign

[ n∏
i=1

(
ai(t̄i)Ki − 2bMi x∗i

)]
= ±1,

where k = 1, 2, . . . , 2n. So far, we have prove that
Ωk(k = 1, 2, . . . , 2n) satisfies all the assumptions in
Lemma 8. Hence, system (3) has at least 2n differ-
ent ω-periodic solutions. This completes the proof of
Theorem 10. ⊓⊔

4 An example
Consider the following two species delayed logis-
tic cooperative system with harvesting terms on time
scales:

u∆1 (t) = a1(t)− f1(t,eu1(t−τ11(t)))
K1

·eu1(t−τ11(t)) + c12(t)e
u2(t−τ12(t))

−h1(t)e
−u1(t),

u∆2 (t) = a2(t)− f2(t,eu2(t−τ22(t)))
K2

·eu2(t−τ22(t)) + c21(t)e
u1(t−τ21(t))

−h2(t)e
−u2(t),

(14)

where τij(t) ≥ 0(i, j = 1, 2) are 4-periodic functions
and

a1(t) = 3 + sin(0.5πt),

f1(t, x) =
4 + sin(0.5πt) + cosx

10
,

h1(t) =
9 + cos(0.5πt)

20
,

a2(t) = 3 + cos(0.5πt),

f2(t, y) =
4 + cos(0.5πt) + sin y

10
,

h2(t) =
2 + cos(0.5πt)

5
,

c12(t) = c21(t) = 1, K1 = K2 = 1.

If T = R, then (14) reduces to the following sys-
tem:

u̇1(t) = a1(t)− f1(t,eu1(t−τ11(t)))
K1

·eu1(t−τ11(t)) + c12(t)e
u2(t−τ12(t))

−h1(t)e
−u1(t),

u̇2(t) = a2(t)− f2(t,eu2(t−τ22(t)))
K2

·eu2(t−τ22(t)) + c21(t)e
u1(t−τ21(t))

−h2(t)e
−u2(t),

(15)

Let xi(t) = eui(t)(i = 1, 2), then (15) can be changed
into the following classical continuous system:

ẋ1(t)
x1(t)

= a1(t)− f1(t,x1(t−τ11(t)))
K1

x1(t− τ11(t))

+c12(t)x2(t− τ12(t))− h1(t)
x1(t)

,
ẋ2(t)
x2(t)

= a2(t)− f2(t,x2(t−τ22(t)))
K2

x2(t− τ22(t))

+c21(t)x1(t− τ21(t))− h2(t)
x2(t)

.

A direct computation gives that

al1 = 2, aM1 = 4, bl1 = inf
x∈R

min
t∈I2π

f1(t, x) =
2

10
,

bM1 = sup
x∈R

max
t∈I2π

f1(t, x) =
5

10
, hM1 =

10

20
, hl1 =

2

5
,

al2 = 2, aM2 = 4, bl2 = inf
x∈R

min
t∈I2π

f2(t, x) =
2

10
,

bM2 = sup
x∈R

max
t∈I2π

f2(t, x) =
6

10
, hM2 =

3

5
, hl2 =

1

5
,

al1 = 2 > 1 = 2
√

bM1 hM1 , l±1 = 2±
√
3,

al2 = 2 >
6

5
= 2

√
bM2 hM2 , l±2 =

5± 4

3
,

L±
1 =

25±
√
617

2
, L±

2 =
25±

√
621

2
,

G1 =

(
ln

25−
√
617

2
, ln(2−

√
3)

)
,

H1 =

(
ln(2 +

√
3), ln

25 +
√
617

2

)
,

G2 =

(
ln

25−
√
621

2
, ln

1

3

)
,

H2 =

(
ln 3, ln

25 +
√
621

2

)
,

Ω1 =
{
(u1(t), u2(t))

T : u1(t) ∈ G1, u2(t) ∈ G2

}
,

Ω2 =
{
(u1(t), u2(t))

T : u1(t) ∈ G1, u2(t) ∈ H2

}
,
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Ω3 =
{
(u1(t), u2(t))

T : u1(t) ∈ H1, u2(t) ∈ G2

}
,

Ω4 =
{
(u1(t), u2(t))

T : u1(t) ∈ H1, u2(t) ∈ H2

}
.

Therefore, all conditions of Theorem 10 are satis-
fied. By Theorem 10, system (14) has at least four
4-periodic solutions.

5 Conclusions
Population dynamics is an important subject in var-
ious fields of mathematical biology. One of the fa-
mous models for dynamics of population is the Lotka-
Volterra system. In this paper, we consider the Lotka-
Volterra cooperative system which is different from
the other Lotka-Voltera system because it not only in-
volves intraspecies competition but also touches on in-
terspecific cooperation. Owing to the delay and the
periodic environment factors (e.g, seasonal effects of
weather, food supplies, mating habits, etc ), We inves-
tigated the existence of the multiple positive periodic
solutions for the system (3). Some Sufficient criteria
have been obtained. In addition, the system (3) unify
the continuous system (1) and the discrete system (2).
Our applying the techniques and methods are an effec-
tive approaches to the study of mathematical models
involving the hybrid discrete-continuous processes.
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crete dynamics from simple continuous popula-
tion models, Bulletin of Mathematical Biology,
vol.64, 2002, pp. 611–620.

[38] M. Bohner and A. Peterson, Dynamic Equations
on Time Scales: An Introduction with Applica-
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